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A method is proposed for determining the echo signal of a centrosymmetrical 
pressure pulse from a fluid filled elastic spherical shell immersed in an infinite 
fluid medium, The medium surrounding the shell and the fluid in it are consi- 
dered to conform to the theory of perfect compressible fluid. Motion of the shell 
is defined in accordance with Timoshenko’s linear theory of thin shells. The 

problem is solved with the use of Fourier’s integral transformation in terms of 
time and Watson’s transformation in terms of polar distance. Mechanisms of for- 
mation of the various echo signal components are described. 

The determination of the reflected component of echo signal and of its com- 
ponents radiated by creeping and peripheral waves from empty spherical shells 
was considered in [l]. The effect of the echo signal of waves which pass either 
a fluid or an elastic cylinder was analyzed in [2, 31 by the method of Watson’s 
transformation. Here, the echo signal from a fluid filled spherical shell is inves- 
tigated, taking into account besides the indicated echo signal components also 

the effect of waves which propagate partly in the shell, as peripheral waves, and 
partly as waves that pass through the fluid filler. 

1. The formal solution, With the use of conventional statement of the prob- 

lem and expansion into series in Legendre polynomials in the space of Fourier transfor- 
mation in terms of time, the echo signal of the probing pulse 

pi = AJ’ f (z - 1) IH (z - I) - H (z - 1 - %)I 
Z = (ro2 + r2 - 27-f COS t3)“g 

(1.1) 

reflected from a spherical shell filled with fluid may be represented in the form 

~e=Ao fiFt awqJ$ (w) I-‘, (cos 6) e-ior do 
-cu m=ll 

(1. 2) 

a _ hPl@ 
Rpc= ' 

130 -- cco-1 , D = det /Fiji); i=i,2,3; j=i,2,3 

In defining elastic waves in a shell in conformity with Timoshenko’s theory [4] the 
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elements of determinant D are of the form 

a11 
= 1 - v - M - x3 + (1 + a") pw, a,, = x3 + 243W (1.4) 

a13 = 1 + v + x3, a21 = x3 + 243%~, a22 = u2 (1 - v - M + 

f’j”0”) - x2, a23 = -x2, a31 = (1 + v + x2) M, a32 = - x2 M 

a33 =-xX2&f-2(1 _1- v) + (1 + a”) pw, M = m (nz + 1) 

u+--, B = -+ 7 cl= [p _ts, p1 I'" 

1 - y 
x=kT - , 

II 1 
% 

2 
kT = 0.912 

The following notation is used in formulas ( 1.1) - (1.4) : c and p are the speed of 
sound and the density of the medium surrounding the shell ; co and F,, are the speed of 
sound and the density of the filler ; r and 6 are dimensionless (all length dimensions 
are in terms of the shell surface mean radius R ) spherical coordinates whose pole is 

located at the center of the spherical shell (6 = 0 for the position vector directed 
toward the center of the probing pulse source) ; z is the dimensionless time (r = CL / R, 

t is the time and t=O is the instant of switching on of the source) ; h is the shell thick- 
ness ; E,v and Pr are, respectively, the modulus of elasticity, the Poisson’s coefficient, 
and the density of the shell material; r. is the dimensionless distance between the cen- 

ter of the probing pulse and that of the shell ; A o and f are, respectively, the constant 
which defines the amplitude of pressure variation in the probing pulse, and the law which 
defines the variation; rp is the dimensionless duration of the probing pulse ; H is the 
Heaviside unit function ; Q is the Fourier transformation parameter (frequency) ; P, are 
Legendre polynomials, j,n and h,(r) Bessel and Hankel functions of the first kind, and 
A 33 is the corresponding algebraic minor of the determinant D. 

To represent the echo signal in physically easily interpreted series in terms of periphe- 
ral and creeping waves we use Watson’s transformation of the form [5] 

z F (m, w) P, (cos 6) = E\ F (p, 0 eipx(2n+1)Pp [cos (X - S)] dp ) (1. 5) 

m=o ?I=0 r 

where the integration path r covers the positive part of the real axis in the complex 

plane p in the clockwise direction. 
Using (1.5) and the relation 

jV (z) = I/, [h,(l) (z) _t hyJ2) (41 (1.6) 

we represent the echo signal (1.2) in the form 

Pe = -+ i fF Q ui* [I + w ~]Sdpc-‘% 
-co n=o 

S = eip*x(2n+1)h~)(or) Pp [cos (n - S)], W = E’,‘F1 - TUVFi2 

(1.7) 

(1.8) 

U = (1 - VF2F;‘)-‘, v = hy (p&l) / hf’ (poo) 

F, _- (o,A,, - aDE,) G, - cz,oA,,E, 
F, -(cJIA~~- aDE,) G, - aooA,,E2 
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F, =-(WA a3 - a DE,) G1 + a00 A,& 
T = aoo2A332 (E, - E,) (G, - G2) 

El,2 = [c+*~ (0) /&o] / hfv”’ (a) 

GM = Iah:,2’ (Poe / 8 (Pow)~ / hft,2’ ((300) 

where a,, D and A Ss are determined by formulas (1.3) and (1.4), respectively, with 

the substitution of b for m. 
The ratios FIFO-l, F,k’,-’ and TFoe2 in (1.8) have a definite physical meaning: 

the first two are thl coefficients of internal and external reflection on the shell surface, 
while the third is the product of the coefficients of penetration from the surrounding 

medium to the filler and vice versa. It should be noted that part of the energy of pene- 
trating waves is spent at each penetration through the shell on the generation of waves 
propagating in the shell, hence the relation between the related coefficients of penetra- 
tion and reflection is more complex than in the caSe of the interface of two media, 

By omitting unity appearing in brackets in (1.7) and representing function U in the 
form of series 

u = ~(VF=#‘;‘)‘-l (1.9) 
j=l 

for the echo signal (1.7) we obtain 

K = a,hf?’ (0) h’,2’ (0) hk’ (ox-) efrx(2n+1) P, [cos (n - +)I 

2. Invetrion of trrnrformrtionr. Inversion of Watson’s transformation is 
achieved approximately by the saddle-point method. For this the rapidly varying func- 
tions I/’ and K in (1.10) are replaced by their approximate representations. Substitu- 

ting the asymptotic formulas 

hff2’ (CO) -0-l (1 + .?-‘/a exp {A- i [o (T/l - .z2 - 2 arccos z)- (2.1) 

n /41} 

P, [cos (n - S)l - q-l (exp {i 102 (n - S) - 71 / 41) -j- 
exp {-i [oz (n - 6) - n/41}) 

q = [2n (02 - l/J sin S11~2, 2 = (p + l/J / 0 

(2.2) 

into formulas for v and K in (1.8) and (1. lo), we obtain 

V = exp {Ziofi, l(1 - z2po-2)1/’ - zfio-l arccos (z/3,-‘)I - in /2} (2.3) 

li=23~~~~~~~~exp{~~[do+~(go+~nh)]+ i[(3- 2k)$-nn]} 
k=l 

N = [(I + 2Vo-2) (1 + zV)]-‘:,, do = (ro2 - 22)1/z + 

(T2 - Z2)‘/’ - 2 (1 - 9)‘/1 
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g, = 2 arccos 2 - arccos (zrOml) 

6 = nl 6 + 2nn, 6,, = 2n - 

- arccos (zr-l) 

43 + 2nn 

Substituting (2.3) into (1. 10) we obtain for the echo signal the expression of the form 

where 

The 

plane. 
The 

by the 

(2.4) 

0 

T Onk = - dank s ~zIV~-~F~‘F~ exp [ iwcp$ (z)] dz (2.5) 

z 

Tin, = &dk \ o~Nq-‘TF,~-~F;-~exp [io~;k (z)]dz, i = 1, 2, . * * (2.6) 

1; 

q$k(Z) = dj(Z)+ Z[gj(Z)+fi,k], &k = (3-22k)n/4-nn-p/2 

dj (Z) = do + 2j30 (1 - 22j~2)1’2, gj (Z) = go - 2j arccos (ZpOl), 

i=O, 1, 2, . . . 

integration path rL is of the same form in the z-plane as that of r in the p - 

coordinates z = Zjnk of saddle points of integrals (2.5) and (2,6) are determined 
equation 

gi(Z)+fi.,k=o, i=O, 1,2, . . . 

which has solutions Z = Zj,k only when the following conditions are, respectively, 

(2.7) 

arccos (Poril) + arccos (For-l) - 2arccos PO < 19~ < jn, pO < 1, 
i=i, 2, . . . 

arccos ri’ + arccos r-l + 2j arccos pi’ < 6& < jn; S,& 1, j = 1, 2,. . . 

The saddle points of integrals (2.5) and (2.6) lie on the real axis of the z -plane bet- 

ween 0 and 1, and the curves of steepest descent are perpendicular to the axis. To com- 
pute Integrals (2.5) we first substitute path I” for Iz and,since in the second and fourth 

quarters there are no singular points, path r’ is, in turn, replaced by the path consisting 

of sections r,’ and To& (Fig. 1, a). For integrals (2.6) path Tz is replaced by a path 

consisting of sections rm and Tjnk (Fig. 1, b). The contribution of sections IO0 and rm’ 
of integration paths are disregarded. 

It should be noted that in the computation of Integrals (2.5) it is necessary to take into 
account besides the contribution of saddle points, also the contribution of poles of the 
first quarter of the z -plane, which lie to the left of saddle points, and in the computation 
of integrals (2.6) to consider the contribution of poles of the first quarter which lie to 
the right of the saddle point. When a saddle point is absent, i.e. condition (2.7) is vio- 
lated, either on the left or right, it is necessary to investigate the contribution of which 
poles are to be taken into account in integrals (2.5) and (2.6) by determining whether 
condition (2.7) is violated on the left or right. If it is violated on the left, the contribu- 
tions of all poles are disregarded, and if it is violated on the right, the contributions of 
all poles in the first quarter of the z -plane are to be taken into account. 



For computing the contributions of saddle points and poles, whose coordinates z = 2, 
are determined by solutions of the equation F, = 0, the integrals (2.5) and (2.6) can 

be represented in the form co 
e 

Tia = Ginbe iod.(Z. j 3 fnk + 
L: 

G;nke+dk(Ls) , j-0,1,2 (... (2.8) 
s=1 

where 

Gkre = ~~~l~~~c~B~~=~~~~ (2. S) 

i=f, 2, . . . 
Gi I-= {I - r/a (1 - $>l” [(rOs - ~a)-‘/” + (ra - sa)-% + 

+ %3z (1 
_ z2p;2)-'l' I}-*J" 

B = ~z~-~[Icco(~ - z2f"fh, 6, = - Regj(z,), i=o, 1,2, . . . 

In the absence of saddle points functions G& EE 0 for any j , and in formulas for 

G&k in (2.9) and (2.10) we have @, = jn. 
Inversion of the Fourier transformation in terms of time is carried out by the method 

proposed in [l, 63. 
b 

Fig. 1 

8, Aarlyrir of th@ rerultr obtriasd, Functions Tj,,in(2.4) have the 
meaning of components of the stationary echo, i. e. of components of the echo of the 
stationary probing wave pt = &-l-r&@ 

from the fluid filled spherical shell. Functions Gink and G;nk in (2.8) define the com- 
plex amplitudes, and do and (Pink the times of arrival of individual components of the 
sationary echo. The first term in (2.8) determines the stationary echo components in- 
duced by waves which pass through the shell and filler and reflected several times from 
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the inner shell surface during their propagation through the filler and, then, again passing 
through the shell into the surrounding medium. The terms under the sign of summation 
by s in (2.8) define the stationary echo components induced by waves which propagate 
over a part of their path in the shell and alongside it in the form of peripheral and creep- 

ing waves, and pass through the filler over another part of the path. 

i 
Fig. 2 

The subscript j indicates in all terms the number of times a wave passes ~r~gh~e 
filler; terms with i = 0 define the components of the echo signal in the case of an 
empty spherical shell. The number IL indicates how many complete cycles are com- 
pleted by the waves in the shell or the filler prior to departure to the observation point, 
while number k shows whether such waves are propagated clockwise (k = 1) or counter- 

clockwise (1% = 2) . The number .s in (2.8) is the number of the pole, i.e. the num- 
ber of modes of peripheral or creeping waves, In specific computations it is often suffi- 
cient to take into consideration only the con~ibutions of the zero-moment (S = 1) 
and flexural (s = 2) modes of peripheral waves. 

The paths from the probing pulse source 0 to point A of observation of waves that 
pass through and are reflected from the shell inner surface are shown in Fig. 2, a for 
n=O,k=l,j=O andt%=l, n = 1, j = 3. One of the infinitely great num- 

bers of possible paths of one mode of peripheral waves appear in Fig. 2, b for n = 1, 
k = 1 and j = 3. 

It should be noted that the asymptotic representation (2.2) is only valid when 

0 < & CZ 6 < x - E, I P I > 8-l (3.1) 

These conditions are not always satisfied. l,et us examine the possiblity of extending 
the applicability region beyond the range indicated in (3.1). The behavior of function 
P, (cos 6) implies that for 1 p 1 < 0 the asymptotic formula (2.2) can also be ap- 
plied in the case of small sin 6, if function q is approximated by a formula that is 
more accurate in this region. Such formula may be of the form 

.I :-- 1/ 2 (1 i_ ‘11’ sin S). x -= 4n-1 (CM - “/J’ (3.2) 

It is applicable when sin 6 < 1 x 1. If sin 6 2 1 X 1 , function r can be determined 
by formula (2.2). 

For determining the echo signal in sectors in which sin 6 and Zjn k are small, i. e. 



when the two conditions (3.1) are violated, components of the echo signal image can 
also be determined by formulas (2.8) - (2. lo), with function B appearing in these de- 

termined by formula 
B = [2z (1 - z2)‘/’ sin-’ +l]1/z (3.3) 

although the application of formula (3.3) is justified only for considerable values of z 

and sin 6. 
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A new class of solutions of triple integral equations is proposed. A number of 
boundary value problems of the elasticity theory with mixed boundary conditions 

(problems of contact, cracks, etc.) can be reduced to this class. 

1. Let us consider triple integral equations of the form 

PO 

c 0 (E) J, (Ez) dE = Go (0 < z < 4 (1.1) 
;, 
00 

s E-““0 (E) J, (Ex) dE = F, (5) (a< z < b) 
0 

cm 

s 
O,(E) J,(&)dE = G3(x) (b<z< =I 

0 

where functions G,, F, and G, are assumed known, @ is the unknown function, and 
J, (2) is a Bessel function of the first kind. 


